MIM工藝與其它加工工藝的對比
MIM使用的原料粉末粒徑在2-15μm,而傳統(tǒng)粉末冶金的原粉粉末粒徑大多在50-100μm。MIM工藝的成品密度高,原因是使用微細粉末。MIM工藝具有傳統(tǒng)粉末冶金工藝的優(yōu)點,而形狀上自由度高是傳統(tǒng)粉末冶金所不能達到的。傳統(tǒng)粉末冶金限于模具的強度和填充密度,形狀大多為二維圓柱型。
傳統(tǒng)的精密鑄造脫燥工藝為一種制作復雜形狀產品極有效的技術,近年使用陶心輔助可以完成狹縫、深孔穴的成品,但是礙于陶心的強度,以及鑄液的流動性的限制,該工藝仍有某些技術上的困難。一般而言,此工藝制造大、中型零件較為合適,小型而復雜形狀的零件則以MIM工藝較為合適。比較項目制造工藝MIM工藝傳統(tǒng)粉末冶金工藝粉末粒徑(μm)2-1550-100相對密度(%)95-9880-85產品重量(g)小于或等于400克10-數百產品形狀三維復雜形狀二維簡單形狀機械性能優(yōu)劣。
MIM制程和傳統(tǒng)粉末冶金法的比較壓鑄工藝用在鋁和鋅合金等熔點低、鑄液流動性良好的材料。此工藝的產品因材料的限制,其強度、耐磨性、耐蝕性均有限度。MIM工藝可以加工的原材料較多。
精密鑄造工藝,雖然在近年來其產品的精度和復雜度均提高,但仍比不上脫蠟工藝和MIM工藝,粉末鍛造是一項重要的發(fā)展,已適用于連桿的量產制造。但是一般而言,鍛造的工程中熱處理的成本和模具的壽命還是有問題,仍待進一步解決。
傳統(tǒng)機械加工法、近來靠自動化而提升其加工能力,在效果和精度上有極大的進步,但是基本的程序上仍脫不開逐步加工(車削、刨、銑、磨、鉆孔、拋光等)來完成零件形狀的方式。機械加工方法的加工精度遠優(yōu)于其他加工方法,但是因為材料的有效利用率低,且其形狀的完成受限于設備與刀具、有些零件無法用機械加工完成。相反,MIM可以有效利用材料,不受限制,對于小型、高難度形狀的精密零件的制造,MIM工藝比較機械加工而言,其成本較低且效率高,具有很強的競爭力。
MIM技術并非與傳統(tǒng)加工方法競爭,而是彌補傳統(tǒng)加工方法在技術上的不足或無法制作的缺陷。MIM技術可以在傳統(tǒng)加工方法制作的零件領域上發(fā)揮其特長。MIM工藝在零部件制造方面所具有的技術優(yōu)勢可成型高度復雜結構的結構零件。
注射成型工藝技術利用注射機注射成型產品毛坯,保證物料充分充滿模具型腔,也就保證了零件高復雜結構的實現(xiàn)。以往在傳統(tǒng)加工技術中先作成個別元件再組合成組件的方式,在使用MIM技術時可以考慮整合成完整的單一零件,大大減少步驟、簡化加工程序。MIM和其他金屬加工法的比較制品尺寸精度高,不必進行二次加工或只需少量精加工。
注射成型工藝可直接成型薄壁、復雜結構件,制品形狀已接近產品要求,零件尺寸公差一般保持在±0.1-±0.3左右。特別對于降低難于進行機械加工的硬質合金的加工成本,減少貴重金屬所加工損失尤其具有重要意義。制品微觀組織均勻、密度高、性能好。
在壓制過程中由于模壁與粉末以及粉末與粉末之間的摩擦力,使得壓制壓力分布非常不均勻,也就導致了壓制毛坯在微觀組織上的不均勻,這樣就會造成壓制粉末冶金件在燒結過程中收縮不均勻,因此不得不降低燒結溫度以減少這種效應,從而使制品孔隙度大、材料致密性差、密度低,嚴重影響制品的機械性能。反之注射成型工藝是一種流體成型工藝,粘接劑的存在保障了粉末的均勻排布從而可消除毛坯微觀組織上的不均勻,進而使燒結制品密度可達到其材料的理論密度。一般情況下壓制產品的密度zui高只能達到理論密度的85%。制品高的致密性可使強度增加、韌性加強,延展性、導電導熱性得到改善、磁性能提高。效率高,易于實現(xiàn)大批量和規(guī)模化生產。
MIM技術使用的金屬模具,其壽命和工程塑料注射成型具模具相當。由于使用金屬模具,MIM適合于零件的大量生產。由于利用注射機成型產品毛坯,極大地提高了生產效率,降低了生產成本,而且注射成型產品的一致性、重復性好,從而為大批量和規(guī)模化工業(yè)生產提供了保證。適用材料范圍寬,應用領域廣闊(鐵基,低合金,高速鋼,不銹鋼,克閥合金,硬質合金)。
可用于注射成型的材料非常廣泛,原則上任何可高溫澆結的粉末材料均可由MIM工藝造成零件,包括了傳統(tǒng)制造工藝中的難加工材料和高熔點材料。此外,MIM也可以根據用戶的要求進行材料配方研究,制造任意組合的合金材料,將復合材料成型為零件。注射成型制品的應用領域已遍及國民經濟各領域,具有廣闊的市場前景。